## **CAMBRIDGE INTERNATIONAL EXAMINATIONS**

GCE Advanced Subsidiary Level and GCE Advanced Level

## MARK SCHEME for the May/June 2013 series

## 9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9702     | 43    |

## Section A

| 1 | (a) | _          | on of space area / volume<br>ere a mass experiences a force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B1<br>B1             | [2] |
|---|-----|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|
|   | (b) | (i)        | force proportional to product of two masses force inversely proportional to the square of their separation either reference to point masses or separation >> 'size' of masses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1<br>M1<br>A1       | [3] |
|   |     | (ii)       | field strength = $GM / x^2$ or field strength $\propto 1 / x^2$<br>ratio = $(7.78 \times 10^8)^2 / (1.5 \times 10^8)^2$<br>= 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C1<br>C1<br>A1       | [3] |
|   | (c) | (i)        | either centripetal force = $mR\omega^2$ and $\omega = 2\pi / T$<br>or centripetal force = $mv^2 / R$ and $v = 2\pi R / T$<br>gravitational force provides the centripetal force<br>either $GMm / R^2 = mR\omega^2$ or $GMm / R^2 = mv^2 / R$<br>$M = 4\pi^2 R^3 / GT^2$<br>(allow working to be given in terms of acceleration)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B1<br>B1<br>M1<br>A0 | [3] |
|   |     | (ii)       | $M = \{4\pi^2 \times (1.5 \times 10^{11})^3\} / \{6.67 \times 10^{-11} \times (3.16 \times 10^7)^2\}$<br>= 2.0 \times 10 <sup>30</sup> kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C1<br>A1             | [2] |
| 2 | (a) | p, V       | bys the equation $pV$ = constant $\times$ $T$ or $pV$ = $nRT$ or $qV$ and $qV$ are $qV$ and $qV$ and $qV$ and $qV$ are $qV$ and $qV$ and $qV$ are $qV$ | M1<br>A1<br>A1       | [3] |
|   | (b) | (i)        | $3.4 \times 10^5 \times 2.5 \times 10^3 \times 10^{-6} = n \times 8.31 \times 300$<br>n = 0.34 mol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1<br>A0             | [1] |
|   |     |            | for total mass/amount of gas $3.9 \times 10^5 \times (2.5 + 1.6) \times 10^3 \times 10^{-6} = (0.34 + 0.20) \times 8.31 \times T$ $T = 360 \text{K}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C1<br>A1             | [2] |
|   | (c) | gas<br>wor | en tap opened passed (from cylinder B) to cylinder A k done <u>on</u> gas in cylinder A (and no heating) nternal energy and hence temperature increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B1<br>M1<br>A1       | [3] |

| Page 3 |     |                                                   | Mark Scheme                                                                                                                                                              | Syllabus  | Paper                |     |  |
|--------|-----|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|-----|--|
|        |     |                                                   | GCE AS/A LEVEL – May/June 2013                                                                                                                                           | 9702      | 43                   |     |  |
| 3      | (a) | (i) 1.                                            | amplitude = 1.7 cm                                                                                                                                                       |           | A1                   | [1] |  |
|        |     | 2.                                                | period = 0.36 cm<br>frequency = 1/0.36<br>= 2.8 Hz                                                                                                                       |           | C1<br>A1             | [2] |  |
|        |     | (ii) a =<br>acc                                   | $(-)\omega^2 x$ and $\omega = 2\pi/T$<br>eleration = $(2\pi/0.36)^2 \times 1.7 \times 10^{-2}$<br>= $5.2 \mathrm{m  s^{-2}}$                                             |           | C1<br>M1<br>A0       | [2] |  |
|        | (b) |                                                   | straight line, through origin, with negative gradient from ( $-1.7 \times 10^{-2}$ , 5.2) to ( $1.7 \times 10^{-2}$ , $-5.2$ ) not reasonable, do not allow second mark) |           | M1<br>A1             | [2] |  |
|        | (c) | $or$ $\frac{1}{2}m\omega^{2}(x)$ $x_{0}^{2} = 2x$ | $\sqrt{2} = 1.7 / \sqrt{2}$                                                                                                                                              | ic energy | B1<br>C1             | [3] |  |
| 4      | (a) | work do                                           | ne moving unit positive charge inity (to the point)                                                                                                                      |           | M1<br>A1             | [2] |  |
|        | (b) |                                                   | kinetic energy = change in potential energy $qV$ leading to $v = (2Vq/m)^{\frac{1}{2}}$                                                                                  |           | B1<br>B1             | [2] |  |
|        | (c) | either                                            | $(2.5 \times 10^5)^2 = 2 \times V \times 9.58 \times 10^7$<br>V = 330 V<br>this is less than 470 V and so 'no'                                                           |           | C1<br>M1<br>A1       | [3] |  |
|        |     | or                                                | $v = (2 \times 470 \times 9.58 \times 10^7)$<br>$v = 3.0 \times 10^5 \mathrm{m  s}^{-1}$<br>this is greater than $2.5 \times 10^5 \mathrm{m  s}^{-1}$ and so 'no'        |           | (C1)<br>(M1)<br>(A1) |     |  |
|        |     | or                                                | $(2.5 \times 10^5)^2 = 2 \times 470 \times (q/m)$<br>$(q/m) = 6.6 \times 10^7 \text{C kg}^{-1}$<br>this is less than $9.58 \times 10^7 \text{C kg}^{-1}$ and so 'no'     |           | (C1)<br>(M1)<br>(A1) |     |  |

|   | Pa  | ge 4        | ļ.              |                                               | ı                                                    | Mark Schen                                              | ne                                                                                                                    | Syllabus       | Paper          |     |
|---|-----|-------------|-----------------|-----------------------------------------------|------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------|----------------|-----|
|   |     |             |                 |                                               | GCE AS/A                                             | LEVEL – Ma                                              | ay/June 2013                                                                                                          | 9702           | 43             |     |
| 5 | (a) | (un<br>(cre | iform<br>eates) | magnetic<br>) force per                       | ) flux norma<br>unit length                          | al to long (st<br>of 1 N m <sup>-1</sup>                | raight) wire carrying a                                                                                               | current of 1 A | M1<br>A1       | [2] |
|   | (b) | (i)         | flux            |                                               | $= 4\pi \times 10^{-7} > $ $= 6.6 \times 10^{-3} > $ | × 1.5 × 10 <sup>3</sup> ×<br>T                          | < 3.5                                                                                                                 |                | C1<br>A1       | [2] |
|   |     | (ii)        | flux            |                                               | $= 6.6 \times 10^{-3}$ $= 3.0 \times 10^{-3}$        | $\times$ 28 $\times$ 10 <sup>-4</sup> Wb                | × 160                                                                                                                 |                | C1<br>A1       | [2] |
|   | (c) | (i)         | •               | ,                                             | .f. proportio<br>agnetic) flux                       | nal to rate o<br>(linkage)                              | f                                                                                                                     |                | M1<br>A1       | [2] |
|   |     | (ii)        | e.m.            | f. = (2 > = 7.4                               | $\times 3.0 \times 10^{-3}$<br>$\times 10^{-3}$ V    | ) / 0.80                                                |                                                                                                                       |                | C1<br>A1       | [2] |
| 6 | (a) | (i)         |                 |                                               | er loss in th<br>urrents/indu                        | ne core<br>iced current                                 | S                                                                                                                     |                | B1<br>B1       | [2] |
|   |     | (ii)        | eithe<br>or     | •                                             | ower loss in<br>power = ou                           | transformer<br>itput power                              | •                                                                                                                     |                | B1             | [1] |
|   | (b) | eith        |                 |                                               | tage across<br>age across                            |                                                         | × (8100 / 300)<br>× 243                                                                                               |                | C1<br>A1       | [2] |
|   |     | or          |                 |                                               | age across  <br>age across                           | primary coil                                            | = $9.0 \times \sqrt{2}$<br>= $12.7 \times (8100/300)$<br>= $340 \text{ V}$                                            |                | (C1)           | [ک] |
| 7 | (a) | (i)         |                 | •                                             | ncy of e.m.<br>emission of                           |                                                         | om the surface)                                                                                                       |                | M1<br>A1       | [2] |
|   |     | (ii)        | E = .           | hf                                            |                                                      |                                                         |                                                                                                                       |                | C1             |     |
|   |     | ( )         |                 |                                               | uency = (9<br>= 1.                                   | 9.0 × 10 <sup>-19</sup> ) /<br>.4 × 10 <sup>15</sup> Hz | $(6.63 \times 10^{-34})$                                                                                              |                | A1             | [2] |
|   | (b) | or<br>or    |                 | $300  \text{nm} \equiv $ zinc $\lambda_0 = 3$ | $6.6\times10^{-19}\mathrm{G}$                        | J (and 600 n tinum $\lambda_0 = 2$                      | $\lim \equiv 5.0 \times 10^{14} \text{Hz})$ $\lim \equiv 3.3 \times 10^{-19} \text{J})$ 20 nm (and sodium $\lambda_0$ | = 520 nm)      | M1<br>A1       | [2] |
|   | (c) | few         | er ph           | otons per                                     | arger energ<br>unit time<br>nitted per ur            | -                                                       |                                                                                                                       |                | M1<br>M1<br>A1 | [3] |

| Page |     | Page 5 |                                     | Mark Scheme                                                                                                                                                                                                          | Syllabus                     | Paper    |     |
|------|-----|--------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------|-----|
|      |     |        | GCE AS/A LEVEL – May/June 2013 9702 |                                                                                                                                                                                                                      | 9702                         | 43       |     |
| 8    | (a) |        |                                     | nuclei combine<br>more massive nucleus                                                                                                                                                                               |                              | M1<br>A1 | [2] |
|      | (b) | (i)    | $\Delta m$ energ                    | = $(2.01410 \text{ u} + 1.00728 \text{ u}) - 3.01605 \text{ u}$<br>= $5.33 \times 10^{-3} \text{ u}$<br>y = $c^2 \times \Delta m$<br>= $5.33 \times 10^{-3} \times 1.66 \times 10^{-27} \times (3.00 \times 10^8)^2$ |                              | C1<br>C1 |     |
|      |     |        |                                     | $= 8.0 \times 10^{-13} \text{ J}$                                                                                                                                                                                    |                              | A1       | [3] |
|      |     | (ii)   |                                     | d/kinetic energy of proton and deuterium must be very at the nuclei can overcome electrostatic repulsion                                                                                                             | large                        | B1<br>B1 | [2] |
|      |     |        |                                     | Section B                                                                                                                                                                                                            |                              |          |     |
| 9    | (a) | (i)    | light-d                             | dependent resistor/LDR                                                                                                                                                                                               |                              | B1       | [1] |
|      |     | (ii)   | strain                              | gauge                                                                                                                                                                                                                |                              | B1       | [1] |
|      |     | (iii)  | quartz                              | z/piezo-electric crystal                                                                                                                                                                                             |                              | B1       | [1] |
|      | (b) | (i)    | resista<br>etiher                   | ance of thermistor decreases as temperature increses $V_{OUT} = V \times R / (R + R_{T})$                                                                                                                            |                              | M1       |     |
|      |     |        | or<br>V <sub>OUT</sub> i            | current increases and $V_{OUT} = IR$ ncreases                                                                                                                                                                        |                              | A1<br>A1 | [3] |
|      |     | (ii)   | either<br>or<br>so cha              | change in $R_{\rm T}$ with temperature is non-linear $V_{\rm OUT}$ is not proportional to $R_{\rm T}$ / change in $V_{\rm OUT}$ with $I$ ange is non-linear                                                          | R <sub>⊤</sub> is non-linear | M1<br>A1 | [2] |
| 10   | (a) |        | •                                   | s: how well the edges (of structures) are defined difference in (degree of) blackening between structures                                                                                                            | ;                            | B1<br>B1 | [2] |
|      | (b) | e.g    | large                               | ering of photos in tissue/no use of a collimator/no use of penumbra on shadow/large area anode/wide beam pixel size                                                                                                  | of lead grid                 |          |     |
|      |     |        | •                                   | wo sensible suggestions, 1 each)                                                                                                                                                                                     |                              | B2       | [2] |
|      | (c) | (i)    |                                     | $e^{-\mu x}$<br>= exp(-2.85 × 3.5) / exp(-0.95 × 8.0)<br>= (4.65 × 10 <sup>-5</sup> ) / (5.00 × 10 <sup>-4</sup> )                                                                                                   |                              | C1<br>C1 |     |
|      |     |        |                                     | = 0.093                                                                                                                                                                                                              |                              | A1       | [3] |
|      |     | (ii)   | either<br>or<br>so god              | large difference (in intensities) ratio much less than 1.0 od contrast                                                                                                                                               |                              | M1<br>A1 | [2] |
|      |     |        | (answ                               | ver given in (c)(ii) must be consistent with ratio given in                                                                                                                                                          | (c)(i))                      |          |     |

Α1

[1]

| Page 6 | Mark Scheme                    | Syllabus | Paper |
|--------|--------------------------------|----------|-------|
|        | GCE AS/A LEVEL – May/June 2013 | 9702     | 43    |

M1 11 (a) (i) amplitude of the carrier wave varies (in synchrony) with the displacement of the information signal Α1 [2] (ii) e.g. more than one radio station can operate in same region/less interference enables shorter aerial increased range/less power required/less attenuation less distortion (any two sensible answers, 1 each) B2 [2] (b) (i) frequency = 909 kHz C1 wavelength =  $(3.0 \times 10^8) / (909 \times 10^3)$  $= 330 \, \text{m}$ Α1 [2] Α1 (ii) bandwidth = 18 kHz [1] (iii) frequency = 9000 Hz Α1 [1] **12** (a) for received signal,  $28 = 10 \lg(P / \{0.36 \times 10^{-6}\})$ C1  $P = 2.3 \times 10^{-4} \text{W}$ **A1** [2] **(b)** loss in fibre =  $10 \lg((9.8 \times 10^{-3}) / (2.27 \times 10^{-4}))$ C1 = 16 dB **A1** [2]

> = 16 / 85= 0.19 dB km<sup>-1</sup>

(c) attenuation per unit length